Mean Shift, Mode Seeking, and Clustering
نویسنده
چکیده
Mean shift, a simple iterative procedure that shifts each data point to the average of data points in its neighborhood, is generalized and analyzed in this paper. This generalization makes some k-means like clustering algorithms its special cases. It is shown that mean shift is a mode-seeking process on a surface constructed with a “shadow” kernel. For Gaussian kernels, mean shift is a gradient mapping. Convergence is studied for mean shift iterations. Cluster analysis is treated as a deterministic problem of finding a fixed point of mean shift that characterizes the data. Applications in clustering and Hough transform are demonstrated. Mean shift is also considered as an evolutionary strategy that performs multistart global optimization.
منابع مشابه
Least-Squares Log-Density Gradient Clustering for Riemannian Manifolds
Mean shift is a mode-seeking clustering algorithm that has been successfully used in a wide range of applications such as image segmentation and object tracking. To further improve the clustering performance, mean shift has been extended to various directions, including generalization to handle data on Riemannian manifolds and extension to directly estimating the log-density gradient without de...
متن کاملMode Seeking with an Adaptive Distance Measure
The mean shift algorithm is a widely used non-parametric clustering algorithm. It has been extended to cluster a mixture of linear subspaces for solving problems in computer vision such as multibody motion segmentation, etc. Existing methods only work with a set of subspaces, which are computed from samples of observations. However, noises from observations can distort these subspace estimates ...
متن کاملFast Variational Mode-Seeking
Mode-seeking algorithms (e.g., mean-shift) constitute a class of powerful non-parametric clustering methods, but they are slow. We present VMS, a dual-tree based variational EM framework for mode-seeking that greatly accelerates performance. VMS has a number of pleasing properties: it generalizes across different mode-seeking algorithms, it does not have typical homoscedasticity constraints on ...
متن کاملQuick Shift and Kernel Methods for Mode Seeking
We show that the complexity of the recently introduced medoid-shift algorithm in clustering N points is O(N), with a small constant, if the underlying distance is Euclidean. This makes medoid shift considerably faster than mean shift, contrarily to what previously believed. We then exploit kernel methods to extend both mean shift and the improved medoid shift to a large family of distances, wit...
متن کاملClustering via Mode Seeking by Direct Estimation of the Gradient of a Log-Density
Mean shift clustering finds the modes of the data probability density by identifying the zero points of the density gradient. Since it does not require to fix the number of clusters in advance, the mean shift has been a popular clustering algorithm in various application fields. A typical implementation of the mean shift is to first estimate the density by kernel density estimation and then com...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Pattern Anal. Mach. Intell.
دوره 17 شماره
صفحات -
تاریخ انتشار 1995